skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maida, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The most common eye infection in people with diabetes is diabetic retinopathy (DR). It might cause blurred vision or even total blindness. Therefore, it is essential to promote early detection to prevent or alleviate the impact of DR. However, due to the possibility that symptoms may not be noticeable in the early stages of DR, it is difficult for doctors to identify them. Therefore, numerous predictive models based on machine learning (ML) and deep learning (DL) have been developed to determine all stages of DR. However, existing DR classification models cannot classify every DR stage or use a computationally heavy approach. Common metrics such as accuracy, F1 score, precision, recall, and AUC-ROC score are not reliable for assessing DR grading. This is because they do not account for two key factors: the severity of the discrepancy between the assigned and predicted grades and the ordered nature of the DR grading scale.  This research proposes computationally efficient ensemble methods for the classification of DR. These methods leverage pre-trained model weights, reducing training time and resource requirements. In addition, data augmentation techniques are used to address data limitations, improve features, and improve generalization. This combination offers a promising approach for accurate and robust DR grading. In particular, we take advantage of transfer learning using models trained on DR data and employ CLAHE for image enhancement and Gaussian blur for noise reduction. We propose a three-layer classifier that incorporates dropout and ReLU activation. This design aims to minimize overfitting while effectively extracting features and assigning DR grades. We prioritize the Quadratic Weighted Kappa (QWK) metric due to its sensitivity to label discrepancies, which is crucial for an accurate diagnosis of DR. This combined approach achieves state-of-the-art QWK scores (0.901, 0.967 and 0.944) in the Eyepacs, Aptos, and Messidor datasets. 
    more » « less
  2. Abstract Background Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. Methods In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. Results For the OhioT1DM (2018) dataset, containing eight weeks’ data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively. Conclusions To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, are crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings—the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management. 
    more » « less
  3. Power grid operators rely on solar irradiance forecasts to manage uncertainty and variability associated with solar power. Meteorological factors such as cloud cover, wind direction, and wind speed affect irradiance and are associated with a high degree of variability and uncertainty. Statistical models fail to accurately capture the dependence between these factors and irradiance. In this paper, we introduce the idea of applying multivariate Gated Recurrent Units (GRU) to forecast Direct Normal Irradiance (DNI) hourly. The proposed GRU-based forecasting method is evaluated against traditional Long Short-Term Memory (LSTM) using historical irradiance data (i.e., weather variables that include cloud cover, wind direction, and wind speed) to forecast irradiance forecasting over intra-hour and inter-hour intervals. Our evaluation on one of the sites from Measurement and Instrumentation Data Center indicate that both GRU and LSTM improved DNI forecasting performance when evaluated under different conditions. Moreover, including wind direction and wind speed can have substantial improvement in the accuracy of DNI forecasts. Besides, the forecasting model can accurately forecast irradiance values over multiple forecasting horizons. 
    more » « less